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Abstract. The AuCu3-type cubic compound, TbIn3, undergoes belowTN = 32 K a
spontaneous magnetic transition atT1 = 25 K. The magnetic phase diagrams have been
determined from the magnetization curves measured on a single crystal in fields up to 10 T.
The corresponding magnetic structures have been determined from neutron diffraction studies
on the same crystal under magnetic fields up to 5 T. ForT1 < T < TN , the spin arrangement
is commensurate,q = (1/2, 1/2, 0), and collinear with the spins pointing along a fourfold
axis. At T1, the structure remains commensurate, but becomes tripleq, with the magnetic
moments pointing along the threefold axes. The crystalline electric field (CEF) parameters have
been deduced by analysing the magnetic and magnetostrictive properties of the (Tb0.02Y0.98)In3

dilute compound, within the CEF susceptibility formalism. Calculations within the mean-field
approximation, taking account of CEF, bilinear and quadrupolar interactions, are presented,
which describe quantitatively the properties of TbIn3 in the low-field region.

1. Introduction

The complex magnetic properties of the rare-earth intermetallic compounds result from the
competition between different types of interaction such as the crystalline electric field (CEF),
RKKY-type bilinear exchange, quadrupolar interactions and magnetoelastic couplings [1].
In many rare-earth-based intermetallic systems, the long-range oscillatory character of the
indirect exchange interactions tends to stabilize incommensurate magnetic structures, while
the crystalline electric field determines the easy magnetization direction to be along a
high-symmetry axis of the lattice. This gives rise to complex magnetic phase diagrams
according to the temperature and the applied magnetic field [2, 3]. In high-symmetry
systems, for instance the RAg and RCu compounds [4–6] which crystallize in the cubic
CsCl-type structure, the competition between bilinear and quadrupolar interactions may
stabilize non-commensurate magnetic structures and/or multiaxial magnetic structures. The
case of DyAg is quite exemplary as it presents both types of ordering [7]. A modulated
magnetic arrangement is stabilized just below the Néel temperature before the compound
undergoes two successive magnetic transitions into double-q and triple-q commensurate
structures. Though the quadrupolar interactions are generally dominated by the bilinear
ones, they deeply influence the magnetic properties, as the nature of the magnetic transitions
or the magnetic structure.

In the RIn3 series which crystallize in the AuCu3-type cubic structure the NdIn3 and
TbIn3 compounds present magnetic properties very reminiscent of the RAg or RCu systems.
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In the antiferromagnetic domain both compounds present several spontaneous magnetic
transitions [8, 9] as well as multistep magnetization processes. The magnetic properties of
NdIn3 have been intensively studied in the past three years [10–13]. The(H, T ) magnetic
phase diagrams have been determined along the three high-symmetry axes of the cubic
structure. They reveal, in addition to the three spontaneous transitions, the existence of
several field-induced phases. The spin arrangement in the different phases was investigated
by neutron diffraction on a single crystal for the field along the [001] direction. In all
the phases the magnetic moments are aligned along a fourfold axis. Concerning the
spontaneous phases, just belowTN = 5.9 K, a sine-modulated structure stabilizes with
a propagation vectorq1 = (1/2, 1/2, 0.036); the structure squares up atT1 = 5.08 K
with a new propagation vector,q2 = (1/2, 1/2, 0.017). At T2 = 4.63 K the structure
becomes commensurate withq = (1/2, 1/2, 0). The spontaneous phases in NdIn3 are all
collinear. In contrast the field-induced phases at low temperatures remain commensurate,
but present multi-q structures [11]. The collinear spin arrangement along the fourfold axis
at zero field is in agreement with the easy axis imposed by the CEF interactions and the
existence of positive quadrupolar interactions, as observed in the paramagnetic phase for
the tetragonal symmetry [13]. The calculations of the free energy within a self-consistent
periodic-molecular field model for both the dipolar and quadrupolar interactions allow one
to reproduce the first-order character of the two spontaneous transitions and to predict
the stabilization of multi-q structures by the applied field, keeping positive values of the
quadrupolar interactions in the tetragonal symmetry.

TbIn3 presents belowTN = 32 K a spontaneous phase transition atT1 = 25 K. Previous
studies at low temperatures have revealed multistep magnetization processes under high
magnetic fields. At 4.2 K the first field-induced transition occurs for a critical field slightly
higher than 10 T [8]. Czopniket al [8] had calculated the free energy in TbIn3, assuming
negative values for theA4〈r4〉 andA6〈r6〉 CEF parameters. This hypothesis was based on
the sign change of the CEF parameters from positive in CeIn3 and PrIn3 to negative in
NdIn3 as reported by Lethuillier and Chaussy [14]. They came to the conclusion that the
spontaneous transition atT1 is driven by the cross-over of degenerate crystal field levels in
the molecular field, rejecting the stabilization of a multi-q structure belowT1. As the crystal
field determines the 4f multiplet ground state of the rare earth, the determination of the CEF
parameters is an essential step for the understanding of the magnetic properties. In cubic
compounds the rare-earth ions are in high-symmetry positions and only the fourth and sixth
CEF parameters,A4〈r4〉, A6〈r6〉, have to be considered. The recent study of the crystalline
electric field in NdIn3 by Amaraet al [13] has shown that the actual CEF parameters in
NdIn3 are both positive (A4〈r4〉 = +30.5 K andA6〈r6〉 = +6.8 K) in contrast to the first
determination by Lethuillieret al [14]. Positive CEF parameters in the Nd compound are in
fair agreement with those found in PrIn3 and CeIn3 [14]. This is also much more consistent
with the experimental fact that in all the other high-symmetry rare-earth intermetallics (CsCl,
AuCu3 or Laves phase structures) theA4〈r4〉 parameter no longer changes sign when the
rare earth varies from Ce to Yb [15]. Then the hypothesis of negative CEF parameters in
the TbIn3 compound appears questionable. The most direct technique for the determination
of CEF parameters in cubic systems remains inelastic neutron spectroscopy. Unfortunately
for TbIn3, the inelastic spectra reveal very broad low-energy inelastic transitions (6 40 K)
which cannot be unambiguously interpreted.

The CEF susceptibility formalism has been successfully applied to study the quadrupolar
interactions in many rare-earth compounds [1]. This approach allows one to derive, within
the perturbation theory in the paramagnetic range, an analytical expression for the four
susceptibilities which couple the magnetization and the quadrupolar moment to the magnetic
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field or stress. In the absence of bilinear and quadrupolar interactions their expressions
are determined by the CEF level scheme only. Moreover the specific character of the
low-lying CEF levels induces anisotropic behaviours, at least for the third-order magnetic
susceptibility and the strain susceptibility. Then the CEF susceptibility formalism might
be an alternative way to determine the CEF parameters in TbIn3, by fitting the different
experimental susceptibilities in a dilute compound. A similar analysis on yttrium-based rare-
earth alloys has been performed in the past to determine the CEF parameters of rare-earth
ions from magnetic measurements [16, 17].

We present in this paper a study of the spontaneous magnetic phases in TbIn3. The CEF
susceptibility formalism and the expression of the CEF susceptibilities deduced in absence
of any pair interaction are presented in section 2. Section 3 concerns the experimental
details of the magnetization, magnetostriction and neutron diffraction measurements. The
results of magnetization and neutron diffraction experiments on the concentrated compound
TbIn3 are reported in section 4. Section 5 is devoted to the determination of the
CEF parameters by analysing the magnetic and magnetostrictive properties of the dilute
compound (Tb0.02Y0.98)In3, within the CEF susceptibility formalism. Finally, in section 6,
we present calculations performed within the periodic-molecular field approach which takes
into account the CEF, bilinear and quadrupolar interactions in order to describe quantitatively
the magnetic properties of TbIn3.

2. CEF susceptibility formalism

The magnetic properties of the 4f shell are usually described using the Hamiltonian:

H = HCEF +HJ +HME +HQ. (1)

HCEF is the usual crystalline electric field Hamiltonian, the terms of which are written
using the Stevens’ operator equivalents method. For a cubic symmetry, it is expressed in
the fourfold axis system as:

HCEF = A4〈r4〉BJO4+ A6〈r6〉γJO6

HCEF = Wx

F4
(O0

4 + 5O4
4)+

W(1− |x|)
F6

(O0
6 − 21O4

6). (2)

W andx are the usual CEF parameters introduced by Leaet al [18].
HJ describes the Zeeman coupling and the Heisenberg exchange interaction acting on

a given sitei:

HJ = −gJµB(H +Hex) · Ji H = B/µ0. (3)

Hex is the exchange molecular field. In the paramagnetic range it is given by:

Hex = ngJµB〈J 〉 = J (0)

gJµB
〈J〉. (4)

n is the isotropic paramagnetic bilinear exchange parameter.n is proportional to the Fourier
transformJ (k) of the pair interaction coupling constantJ (Rj ) at q = 0:

J (k) =
∑
j 6=i

J (Ri ) eik·Rj . (5)
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In the ordered range the periodic-field formalism has been recently developed [19, 20] to
take into account the magnetic periodicity. Within this approach the expression of the
exchange field is:

Hex(Ri ) =
∑
k

J (k)mk eikRi . (6)

mk is the Fourier component of the magnetic moment propagated byk.
HME is the one-ion magnetoelastic Hamiltonian

HME = −Bγ (εγ1O0
2 +
√

3εγ2O
2
2)− Bε(εε1Pxy + εε2Pyz + εε3Pzx) (7)

it takes into account only the strain modification of the CEF second-order term. High-
order modifications and two-ion magnetoelastic couplings are neglected.Bγ , Bε are the
magnetoelastic parameters associated with the tetragonal,εγ , and trigonal,εε, strain modes,
respectively.
HQ is the quadrupolar Hamiltonian. As the Heisenberg exchange interaction it is treated

within the mean-field approximation. In the periodic-field approach it is expressed by:

HQ=−QO0
2
(Ri )O

0
2i − 3QO2

2
(Ri )O

2
2i −QPxy (Ri )Pxyi −QPyz(ri )Pyzi −QPzx (Ri )Pzxi (8)

the QOm
l
(Ri ) andQPαβ (Ri ) terms represent the quadrupolar fields associated with each

quadrupolar component. For instance in the tetragonal symmetry

QO0
2
(Ri ) =

∑
k

Kγ (k)O0
2k eik·Ri . (9)

O0
2k is a Fourier quadrupolar component of〈O0

2〉 andKγε(k) the Fourier transforms of the
quadrupolar pair coefficients associated with the tetragonal (γ ) and trigonal (ε) symmetries.
Kγε(k) are analogous toJ (k) for the bilinear interactions. In the paramagnetic range this
leads to:

HQ = −Kγ (0)[〈O0
2〉O0

2 + 3〈O2
2〉O2

2] −Kε(0)[〈Pxy〉Pxy + cycl.]. (10)

The paramagnetic phase can be described using the perturbational treatment of the total
Hamiltonian (1). An expansion, carried out up to the fourth order inH and to the second
order in εγ,ε allows one to obtain the partition functionZ and the free energyFγ,ε. For
instance, in the case of the tetragonal symmetry, the total energy is expressed as:

Fγ =F 0
CEF − 1

2χ0(H + nM )2− 1
2χγ (B

γ ε
γ

1 +KγQ)2− χ(2)γ (H + nM )2(Bγ ε
γ

1 +KγQ)

− 1
4χ

(3)
γ (H + nM )4+ · · · (11)

whereF 0
CEF is the zeroth-order energy corresponding toHCEF alone. The four CEF single-

ion susceptibilities, used in the expression (11), depend on the CEF scheme and on the matrix
elements of the dipolar,J , and quadrupolar,O0

2, operators. The equilibrium values ofM ,
Q = 〈O0

2〉 andε are deduced from the minimization of the free energy.
In the absence of any pair interactions (n ≡ Kµ ≡ 0) this leads to:

M = χ0H + χ(3)0µH
3 (µ = γ, ε)

Q = χQH2 (12)

and in the tetragonal symmetry

ε
γ

1 =
Bγ

C
γ

0

Q = Bγ

C
γ

0

χQH
2 χQ =

χ(2)γ

1− [(Bγ )2/Cγ0 ]χγ
(13)

or in the trigonal symmetry

εε = εε1 = εε2 = εε3 =
Bε

C0
ε

P = Bε

C0
ε

χPH
2 χP = χ(2)ε

1− 3[(Bε)2/Cε0]χε
. (14)



Study of the spontaneous magnetic phases in TbIn3 3887

χ0 and χ(3)0µ are the first and third-order magnetic susceptibilities.χQ and χP are the
total quadrupolar susceptibilities for a tetragonal and trigonal mode respectively. They
are expressed as functions of the strain susceptibility,χµ, and the quadrupolar field
susceptibility,χ(2)µ . TheCµ0 are the symmetrized background elastic constants in the absence
of magnetic contributions.

In the absence of dipolar and quadrupolar interactions, the behaviour of all the
susceptibilities is only governed by the crystalline electric field. Depending on the low-
lying levels, the first-order magnetic susceptibility may have different curvatures. In the
same way the third-order and quadrupolar field susceptibilities may be anisotropic. All
these effects are selective in the experimental determination of the CEF scheme and very
complementary to the neutron scattering measurements.

The analysis of the magnetization curves provides the experimental determination of the
first- and third-order susceptibilities. In the present work the quadrupolar field susceptibility
χQ,P is deduced from the parastriction measurements. The change of length induced by an
applied field is given by [19]:

dl

l
= λβ1β2β3 =

εα√
3
+ ε

γ

1√
6
− (2β2

3 − β2
1 − β2

2)+
ε
γ

2√
2
(β2

1 − β2
2)

+
√

2(εε1β1β2+ εε2β2β3+ εε3β3β1). (15)

βi (i = 1, 2, 3) are the direction cosines of the direction of the measurements. In order
to eliminate the volume effectsεα, the relative change of the length is usually measured
successively parallel (λ‖) and perpendicular (λ⊥) to the field direction. As a consequence,
for a magnetic field along the fourfold or threefold directions and according to (14) and
(15), one obtains respectively:

(λ‖ − λ⊥)γ =
√

3

2

Bγ

C
γ

0

χQH
2 (λ‖ − λ⊥)ε = 3√

2

Bε

Cε0
χPH

2 (16)

or in a linearized representation:

H√|λ‖ − λ⊥|γ =
(

2

3

)1/4(
C
γ

0

Bγ

)1/2

χ
−1/2
Q

H√|λ‖ − λ⊥|ε =
(√

2

3

)1/2(
Cε0

Bε

)1/2

χ
−1/2
P . (17)

The high-temperature slope ofH/
√|λ‖ − λ⊥| gives the magnetoelastic coefficientBµ.

3. Experimental conditions

The single crystals of TbIn3 and (Tb0.02Y0.98)In3 were prepared using the Bridgman
technique in tantalum crucibles. The purity of the components was 4 N for Tb and 5 N
for In. A 4 N ingot of yttrium has been purified for one month at 1200◦C using a solid
state electrolysis technique. The ratio,ρ300/ρ4.2, between the resistivity at 300 K and
4.2 K of the purified yttrium ingot is higher than 100. Part of this ingot was used for
the preparation of a single crystal of the dilute compound. For this compound the masses
of the components were adjusted to obtain a Tb concentration close to 2%. The rest of
the purified yttrium ingot was used for the preparation of a polycrystalline YIn3 alloy. A
spherical sample of 5 mm diameter was spark-cut from the monocrystalline ingot of TbIn3.
This sample was used for both the magnetization and the neutron diffraction experiments.
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From the (Tb0.02Y0.98)In3 ingot, two cylindrical samples were spark-cut, one (h = 6.67 mm,
φ = 6.33 mm) withh parallel to the [001] axis of the AuCu3 structure and a second one
(h = 4.84 mm,φ = 6.35 mm) withh parallel to the [111] axis.

Magnetization measurements have been performed at the Laboratoire Louis Néel by
the extraction method in a cryomagnet which supplies magnetic fields up to 10 T in the
temperature range 1.5–300 K. The accuracy of the magnetic measurements is better than
10−3 µB/atom.

In the ordered phase of TbIn3 the isothermal magnetization processes were measured
with the field applied successively along the [001], [110] and [111] directions of the cubic
structure. Along the [001] and [111] axes, measurements were performed only in fields up
to 7.5 T. We mainly focused here on measurements along the [110] axis, as this symmetry
was kept for the neutron diffraction experiments. Along this direction, magnetization
measurements were performed up to 10 T. Isofield magnetization curves were performed
with the field applied along the [001] and [110] directions. In the paramagnetic phase
magnetization curves were measured up to 300 K with the field applied along the [001]
direction.

In the dilute Tb compound isothermal magnetization curves have been measured with
the field applied along the [001] and [111] directions using the two cylindrical samples in
the temperature range 1.5–300 K. Measurements with the field along the fourfold axis have
been performed down to 100 mK using a dilution refrigerator.

The first-order magnetic susceptibility in(TbxY1−x)In3, YIn3 and in the paramagnetic
domain of TbIn3 was deduced from Arrott plots andM/H = f (H 2) curves. Figure 1
displays the Arrott plots of the dilute compound where the magnetization inµB units is
deduced assuming the nominal Tb concentration of 2%. The susceptibilities of the Tb
compounds were first corrected from the matrix contribution using the YIn3 susceptibility.
The YIn3 susceptibility (figure 2) contains the Pauli and diamagnetic contributions of the
matrix and the paramagnetic behaviour of the impurities. All these contributions become
important when the magnetism is weak e.g. in the dilute compound or at high temperatures
in the concentrated one:χcorr (T ) = χmeas(T )− χYIn3(T ).

Figure 1. Arrott plots obtained from isothermal magnetization curves in (Tb0.02Y0.98)In3 for a
magnetic field applied along the [001] axis.
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Figure 2. First-order magnetic susceptibility of the high-purity polycrystalline sample of YIn3.

For the dilute compound the Curie constant deduced from the slope at high temperature
of 1/χcorr confirms a Tb3+ ion concentration very close to 2%. In order to obtain
the susceptibility per Tb ion in this compound the data were further corrected from the
concentrationx : χCEF = (1/x)χcorr .

The third-order magnetic susceptibility was deduced from the slope of the linear part
of both the Arrott plots and theM/H = f (H 2) curves. In this case no matrix correction
was performed as no significant deviation is observed in the magnetization curves of YIn3.
For the dilute compound, the third-order magnetic susceptibility by Tb ion is obtained, as
for the first-order one, after correction for the concentration.

Magnetostriction measurements on the two dilute samples were performed using two
electrical strain gauges mounted in a Wheastone bridge. The active gauge is glued on the
sample along a given crystallographic axis. The field-induced change length is measured
with the magnetic field applied successively parallel and perpendicular to it. A second
one, glued on a high-purity copper sample with the same orientation, is used as reference.
Measurements were performed in magnetic fields up to 5 T with a relative accuracy of about
10−7.

The thermal variation ofH/
√|λ‖ − λ⊥| was determined for both the tetragonal (H ‖

〈001〉) and trigonal (H ‖ 〈111〉) modes from the magnetostriction measurements. The value
of λ‖ −λ⊥ is observed to be negative for both modes. Assuming, as usually done [20], that
the measured macroscopic deformation of the crystal depends linearly on the concentration,
we have then from (17) that in the dilute compoundH/

√|λ‖ − λ⊥|µ ≈ (xBµ)−1/2χ
−1/2
Q,P ,

with x the rare-earth concentration. The results have been then corrected according to this
expression.

Neutron diffraction experiments have been carried out on the DN3 spectrometer, at
the CEN Grenoble reactor, SILOE. A cryomagnet supplies a vertical magnetic field up to
6 T in the temperature range 1.5 to 300 K. The moving up counter allows us to perform
scans out of the equatorial reciprocal plane, inside the limits imposed by the magnet
aperture (−5◦ to 10◦). The selected wavelength of the incident beam isλ = 1.537 Å.
The λ/2 harmonic contamination has been checked to be less than 1◦/◦◦ in the diffracted
intensities. The spherical shape of the sample leads to an absorption coefficient constant for
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all the reflections. Then despite the large absorption cross section of indium no absorption
corrections have been performed. The sample was mounted with the [11̄0] twofold axis
vertical (the [1̄10] axis is parallel to the direction of the applied field) and lined up in
the paramagnetic phase using the main nuclear Bragg reflections of the AuCu3 structure at
T = 38 K in zero field. To avoid magnetoremanent effects when the field is applied, at
each value of the field the sample was first warmed up aboveTN , before cooling down to
the temperature of the measurement. Up to 58 reflections were collected in fields of 0, 1.5
and 5 T at 28 K and 24 K. At 4.8 Kmeasurements were also performed under a field of
5 T.

4. The concentrated compound: TbIn3

4.1. Magnetization measurements

Figure 3(a) shows the magnetization curves measured at 4 K along the three high-symmetry
axes of the cube. The magnetization presents no anisotropy up to 4 T. In field larger than
4 T, the magnetization along the [111] axis becomes larger than that along the two other
axes. This feature is in agreement with results of Czopniket al [8]. The steep rise of the
magnetization along [110], just below 10 T, indicates the beginning of the first field-induced

Figure 3. (a) Magnetization processes at 4 K in TbIn3 along the three high-symmetry axes
of the cubic structure. (b) Magnetization curve at 22 K in TbIn3 for a field applied along the
twofold axis (full dots) and field derivative of the curve (open dots).
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transition, which was observed at a critical field slightly larger than 10 T. Along the [001]
and [111] axes, no anomaly is observed in the whole ordered domain for applied field less
than 7.5 T. When the temperature is increased the jump in the [110] magnetization rapidly
vanishes. A very smooth jump is observed again at 21 K. The value of the critical field
determined by the maximum of the derivativeδM/δB is µ0Hc = 9 T. The critical field
rapidly decreases with the temperature; for instance at 22 K the critical field is only 8 T
(see figure 3(b)). At 26 K no more singularities appear in the magnetization curves. For
higher temperatures the magnetization along the three axes behaves linearly with the field.

Figure 4. Isofield magnetization curves in TbIn3 measured for an applied field of 3 T applied
along the [001] axis and for a field of 4 T applied along the [110] axis.

In theM(T ) curves the transition atTN corresponds to a maximum. When the field
is applied along the [001] axis, the isofield curves present a well pronounced minimum as
shown in figure 4. The temperature at which the minimum is observed is taken as the tran-
sition temperatureT1. This transition has been followed in fields up to 7 T. Along the [110]
axis the minimum in theM(T ) curves is only observed under weak applied fields. In higher
fields the transition is evidenced by an abrupt change in the slope of the curve (figure 4). The
(H, T ) magnetic phase diagram determined in the low-field region for the field along [001]
presents almost vertical transition lines atTN andT1 (figure 5). For fields parallel to the [110]
axis the transition line atTN remains also vertical up to 8 T (figure 5). The transition line at
T1, deduced from both isothermal and isofield curves, presents a more pronounced curvature.

The thermal variation of the inverse of the first-order magnetic susceptibility of TbIn3 is
presented in figure 6. It varies linearly with the temperature from 50 to 300 K and intercepts
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Figure 5. Magnetic phase diagrams of TbIn3 determined in the low-field region for applied
fields along the [001] and [110] axes. Full dots represent the transitions observed in isofield
magnetization curves. Open dots represent the transitions observed in isothermal magnetization
processes. The insets represent the non-distorted magnetic structures obtained from neutron
diffraction experiments in the two spontaneous magnetic phases.

Figure 6. Thermal variation of the inverse of the first-order magnetic susceptibility in TbIn3

(full dots) and (Tb0.02Y0.98)In3 (open dots). The data have been all corrected from the matrix
contributions. The full lines represent the variations calculated with the set of CEF parameters:
W = −0.31 K andx = −0.89. The best fit in TbIn3 (full line) is obtained with the bilinear
exchange coefficientθ∗ = −40 K.
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the temperature axis atT = −56±1 K. This gives us a first evaluation of the paramagnetic
bilinear exchange parameter. Below 50 K a small curvature is observed which very likely
arises from short range order effects. Indeed in the course of preliminary powder neutron
diffraction studies [21], the pattern collected at 40 K in TbIn3 revealed a broad bump centred
around the 2θ position of the(1/2, 1/2, 0) magnetic satellites. Such bumps are generally
due to short-range magnetic correlations in the paramagnetic phase. The effective moment
determined from the slope of 1/χ = f (T ), µeff ec = 10.1± 0.05 µB , is 4% larger than the
free Tb3+ ion value, 9.721µB . The magnitude of the third-order magnetic susceptibility is
observed to be smaller than the experimental sensitivity in the whole paramagnetic range.

4.2. Neutron diffraction results

A first collection of integrated intensities atT = 38 K and zero field gave a determination
of the λ/2 harmonic contamination and the background at the magnetic satellite positions.
The refinement of the integrated intensities is in a satisfactory agreement with the AuCu3

structure (the reliability factorR = 7%). Cooling down the sample, magnetic satellites
start to rise belowTN = 32 K at the positions expected for propagation vectors belonging
to the 〈1/2, 1/2, 0〉 star. The thermal evolution of the intensity at the(1/2, 1/2, 0) node
of the reciprocal space was followed down to 20 K. This evolution clearly presents a
discontinuity at 26 K, a temperature which corresponds to the transition in phase II in
the magnetic phase diagram (figure 5). In a first step the evolution with the magnetic
field of the intensity of the(1/2, 1/2, 0), (1/2, 0, 1/2) and (0,−1/2, 1/2) reflections was
checked at 28 K in phase I. At zero field the three reflections have roughly the same
intensity. Increasing the field the(1/2, 0, 1/2) and (0,−1/2, 1/2) intensities rapidly fall,
while the (1/2, 1/2, 0) one increases. Such an evolution is distinctive of the domain
motion in a single-q antiferromagnetic spin arrangement. Under an applied field of 5 T
the thermal evolution of the intensity of the three satellites has been followed cooling
down the sample. This evolution, presented in figure 7, confirms a singleq-arrangement
in phase I. At the transition in phase II, the intensities of both the(0,−1/2, 1/2) and
the (1/2, 0, 1/2) reflections steeply increase while the(1/2, 1/2, 0) one decreases. This
behaviour is characteristic of a transition towards a multi-q magnetic structure. Moreover

Figure 7. Thermal variation of the intensity of the(1/2, 1/2, 0), (1/2, 0, 1/2) and(0,−1/2, 1/2)
magnetic satellites under an applied field of 5 T.
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the fact that the three reflections approximately recover the same intensity in phase II is
strongly consistent with a triple-q structure.

The models of spontaneous magnetic structures for a propagation vector belonging to the
〈1/2, 1/2, 0〉 star and where the magnetic moments satisfy the two conditions (i) constant
modulus on all the magnetic sites and (ii) easy direction frozen by the CEF along one family
of high-symmetry axes have been listed by Morin and Schmitt [5]. These structures can
also be deduced by analogy from the inventory of the high-symmetry magnetic structures
with q ∈ 〈1/2, 0, 0〉 star given more recently in [22]. The analysis of the data was
performed using a least-squares procedure. For each model of magnetic structure the
program determines the different domains and adjusts their relative proportions, as well
as the amplitude of the magnetic moment. The reliability factor is defined by:

R =
( nobs∑

i

pi |I ical − I iobs |/I iobs
)/ nobs∑

i

pi

nobs is the number of the observed reflections andpi the weight of the reflectioni. pi
corresponds to the inverse of the statistical error of the intensityI iobs .

The refinements in phase II give the best agreement for a three-q structure with the
spins aligned along a threefold axis. WhenB 6= 0, it is necessary to take into account a
distortion of the magnetic structure induced by the field. This is the case in particular when
the CEF anisotropy is weak and/or at high temperatures. Such a distortion is in agreement
with a non-negligible susceptibility observed in the magnetization curves (see figure 3). The
non-distorted structure which gives the best agreement is described by the following Fourier
components:

Mq1 = (0, 0, 1/
√

3) with q1 = (1/2, 1/2, 0)
Mq2 = (1/

√
3, 0, 0) with q2 = (0, 1/2, 1/2)

Mq2 = (0, 1/
√

3, 0) with q3 = (1/2, 0, 1/2).

Taking into account the distortion, the magnetic moment in Bohr magnetons is then given
by:

M (ri ) = M
∑
qj

Mqj cos(2πri · qj )+M0 with M0 = F(1/√2,−1/
√

2, 0).

Table 1. Refined values of the parametersM andF obtained for the triple-q structure model
in phase II of the(H, T ) magnetic phase in TbIn3. The structure is defined by the Fourier
components:

Mq1 = (0, 0, 1/
√

3) with q1 = (1/2, 1/2, 0)

Mq2 = (1/
√

3, 0, 0) with q2 = (0, 1/2, 1/2)

Mq3 = (0, 1/
√

3, 0) with q3 = (1/2, 0, 1/2).

For each site the magnetic moment is given by:

M (ri ) = M
∑
qj

Mqj cos(2πri · qj )+M0 with M0 = F(1/√2,−1/
√

2, 0).

The reliability factor obtained for each refinement is given in row 5.

µ0H (T) T (K) M (µB ) F (µB ) R (%)

0 24 5.98 0 9.7
1.5 24 5.99 0.07 10.7
5 24 5.65 0.18 12.5
5 4.8 7.63 0.08 11.3
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Table 2. Refined values of the parametersM, F and domain proportionsd1, d2 andd3 obtained
at 28 K for the collinear structure model in phase I of the(H, T ) magnetic phase diagram in
TbIn3. The magnetic moment is given by:
M (ri ) = MMq cos(2πri · q)+M0 with M0 = F(1/

√
2,−1/

√
2, 0).

The reliability factor obtained for each refinement is given in row 6.

µ0H (T) M (µB ) F (µB ) d1 (%) d2 (%) d3 (%) R (%)

0 4.81 0 32.3 35.3 32.4 9
1.5 4.87 0.09 50.4 25.6 9.5 9.5
5 4.59 0.23 92.2 4.0 3.8 13.9

Table 3. Integrated intensities observed at 4.8 and 28 K under an applied field of 5 T and
calculated intensities obtained for triple-q and single-q structures.

T = 4.8 K (triple-q) T = 28 K (singleq)

h, k, l Iobs Ical pi Iobs Ical pi

1/2, 1/2, 0 280 280.9 100 249 292 50
1/2, 0, 1/2 234 280.9 101 10.8 11.3 25
1/2, 0,−1/2 272 280.9 106 11.5 11.3 25
0,−1/2, 1/2 261 280.9 101 11.9 11.9 20
0,−1/2,−1/2 254 280.9 103 11 11.9 20
1/2, 1/2, 1 103 79.4 59 88.7 82.6 50
−1/2,−1, 1/2 95.7 79.4 60 3.4 3.2 6
−1/2,−1,−1/2 95.4 79.4 61 3.5 3.2 6

1, 1/2, 1/2 80.8 79.4 56 2.5 3.4 5
1/2, 0, 3/2 211 205.7 73 10.7 8.3 13
0,−1/2, 3/2 232 205.7 74 12.3 8.8 10
3/2, 1, 1/2 123 128 50 3.2 5.2 2
−1/2,−1, 3/2 151 128 50 2.7 5.2 2

1, 1/2, 3/2 127 128 51 4.9 5.5 4
1/2, 1/2, 2 24.3 17.5 15 19.4 18.2 13
3/2, 3/2, 2 52.7 54.8 44 46.8 57 50
−3/2,−2,−3/2 55.9 54.8 34 3.5 2.2 5

1/2, 1/2, 3 7 5 4 4.6 5.2 3
−2,−5/2, 1/2 45.2 53.1 12 1.9 2.3 1

1, 1, 0 29.7 29.5 42 37.3 37.2 50
−1,−2, 0 31 27.7 24 32.9 32.2 25
−1,−2, 1 20.5 27.5 20 23.9 31.5 20

In this model, the structure is single domain. It should be noted that in the distorted structure
the modulus of the magnetic moment becomes site dependent. The refined values ofM and
F and the associated reliability factors are given in table 1 for the different values of the
applied field.

In phase I, a single-q structure with the moment along the fourfold axis and perpendicular
to the magnetic propagation vector gives the best agreement between calculated and
measured intensities:

M = (0, 0, 1) with q = (1/2, 1/2, 0).

This model leads to three magnetic domains corresponding to the three fourfold axes of the
cubic structure. At zero field the three domains are equally distributed in the sample. As
for the structure in phase II, the applied field tends to slightly distort the structure. Table 2
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reports the results of the refinements in the collinear phase. The non-distorted structures
associated with the two phases are drawn in figure 5. Among the 58 reflections collected at
4.8 and 28 K under 5 T, we have reported in table 3 the observed and calculated intensities
for only some of them which best depict the intensity evolution between phases I and II. It
was checked that the values ofM(T,H) deduced from these models are in good agreement
with the ones observed in the magnetization curves.

5. Magnetic and magnetostrictive measurements in the dilute compound
(Tb0.02Y0.98)In 3

The thermal variation of the reciprocal first-order susceptibility is presented in figure 8. Its
behaviour is isotropic. At high temperatures the susceptibility follows a Curie–Weiss law
(see figure 6) and presents a Van Vleck behaviour below 5 K. This behaviour is confirmed
by the measurements, performed down to 100 mK in the tetragonal symmetry,H ‖ [001].

Figure 8. Thermal variation of the first-order magnetic susceptibility in (Tb0.02Y0.98)In3 at low
temperatures. The experimental data are represented by full dots forH ‖ [001] and open dots
for H ‖ [111]. The fits for the different sets of CEF parameters are displayed by full, dashed
and dotted lines.

The third-order magnetic susceptibilities determined for both the tetragonal and trigonal
symmetries, corrected for the concentration, are shown in figure 9. They present a deep
decrease below 5 K and remain negative down to the lowest temperatures. A significant
anisotropy is observed for the third-order susceptibility between the tetragonal and trigonal
symmetry. The low-temperature measurements in the tetragonal symmetry reveal a Van
Vleck-type behaviour.

The thermal variation ofH/
√|λ‖ − λ⊥| was obtained with a fairly good precision up

to 30 K (figure 10). For both symmetries,H/
√|λ‖ − λ⊥| has a variation of Van Vleck-type

below 5 K. At higher temperatures it increases linearly with the temperature. A larger slope
is observed for the trigonal strains indicating a smaller rhombohedral length change.

The Van Vleck behaviour of the first-order magnetic susceptibility reveals that the CEF
ground state of Tb ions is definitely non-magnetic. According to the Lea–Leask–Wolf
diagrams [18], three non-magnetic ground states are possible, the01 and02 singlets or the
03 doublet. In a previous work Czopniket al [8] deduced a03 ground state for TbIn3 with
two possible sets of parameters:W = 0.37 K, x = −0.83 orW = 0.27 K, x = −0.77. Both
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Figure 9. Experimental thermal variation of the third-order magnetic susceptibility in
(Tb0.02Y0.98)In3 in both the tetragonal and trigonal symmetry (full dots). The lines represent
the thermal variation calculated with the different sets of CEF parameters given in the figure.

sets lead to negativeA4〈r4〉 andA6〈r6〉 parameters. A03 doublet ground state for the Tb+

ion leads to non-zero〈03i |O0
2|03i 〉 matrix elements, then the third-order magnetic suscepti-

bility and the quadrupolar susceptibility should both diverge at zero Kelvin, at least for one
symmetry. It turns out that such a ground state is inconsistent with the thermal variation ob-
served experimentally forH/

√|λ‖ − λ⊥|. Indeed a Van Vleck behaviour ofH/
√|λ‖ − λ⊥|,

in both the tetragonal and trigonal symmetries, is only expected for a singlet ground state.
This is confirmed by the calculations of the thermal variation of the first- and third-order
susceptibilities and ofH/

√|λ‖ − λ⊥| performed with these two sets of parameters. In both
cases, the calculations fail to fit simultaneously all the experimental variations.

Assuming a non-magnetic ground state, different sets of parameters in the Lea–Leask–
Wolf diagrams [18] have been tested in order to describe simultaneously the thermal variation
of the three CEF susceptibilities. The best agreement between calculations and experimental
susceptibilities of (Tb0.02Y0.98)In3 was obtained for a01 ground state withW = −0.31 K
and x = −0.89. This set corresponds to positive parameters,A4〈r4〉 = 38.4 K and
A6〈r6〉 = 3.3 K. These parameters lead to a weak value of the CEF total spacing, which
explains the difficulty of observing well resolved excitations by neutron spectroscopy. In
table 4 we compare these values with those previously reported in PrIn3 [14, 23] and in
NdIn3 [13]. The evolution of theA4〈r4〉 andA6〈r6〉 parameters from Pr to Tb appears very
coherent.
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Figure 10. Experimental (full dots) and calculated (lines) thermal variation ofH/
√|λ‖ − λ⊥| in

(Tb0.02Y0.98)In3 for the tetragonal and trigonal modes. Calculations have been performed using
the CEF parameters and the values of the magnetoelastic coefficientBµ given in the figure.

Table 4. CEF parameters and ground state in the PrIn3, NdIn3 and (Tb0.02Y0.98)In3 compounds.

Compound A4〈r4〉 (K) A6〈r6〉 (K) Ground state

PrIn3 [14] 32.1 12.3 01

PrIn3 [23] 40.0 10.3 01

NdIn3 [13] 30.5 6.8 0
(2)
8

(Tb0.02Y0.98)In3 38.4 3.3 01

The fits of the thermal variation ofH/
√|λ‖ − λ⊥| were performed using the background

elastic constants deduced from the study of YIn3, Cγ0 = 4.5 × 105 K/atom andCε0 =
5.5× 105 K/atom. The values of the magnetoelastic coefficients which give the best fits
are Bγ = −47 K andBε = −98 K for the tetragonal and trigonal mode respectively.
Normalized by the second-order Stevens coefficient, the values,Bγ /αJ = +4600 K/atom
andBε/αJ = +9700 K/atom, can be compared to those found in NdIn3, Bγ /αJ = +1900
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or 900 K/atom andBε/αJ = +17 000 or 4400 K/atom. In the two compounds
the magnetoelastic coefficients have the same sign as also in some other isomorphous
compounds, like CePb3 (Bγ /αJ = +1360 K/atom andBε/αJ = +3400 K/atom),
PrPb3 (Bγ /αJ = +2040 K/atom andBε/αJ = +9100 K/atom) or TmGa3 (Bγ /αJ =
+1700 K/atom andBε/αJ = +7000 K/atom) [1].

6. Description of the spontaneous phases in TbIn3

Using the CEF parameters,W = −0.31 K, x = −0.89, deduced in section 5, we have
calculated the thermal variation of the first-order magnetic susceptibility in TbIn3. In this
calculation onlyθ∗, the bilinear exchange coefficient, is adjusted (θ∗ = nC). The best
agreement between the experimental data and the calculation is obtained forθ∗ ≈ −40 K
(see figure 6). Below 100 K, the experimental data deviate from the calculated Curie–
Weiss law. According to the weak CEF splitting of the fundamental multiplet in TbIn3,
this deviation and also the larger experimental value ofθ∗exp (θ∗exp = −56 K) compared to
the calculated one let us suppose that magnetic correlations affect the first-order magnetic
susceptibility far aboveTN . This also explains the difference between the theoretical
effective moment and the experimental one.

A quantitative description of the magnetic properties of TbIn3 has been undertaken in
the ordered phase using the periodic-field method [24] extended to take into account the
coexistence of both the bilinear and quadrupolar interactions [25]. In a first approach, taking
into account only the CEF and the bilinear interactions, calculations withW = −0.31 K
and x = −0.89 show that the free energy for a threefold easy magnetization direction
remains, in the whole ordered domain, lower than the free energy for a fourfold axis. A
threefold easy magnetization axis is in agreement with the spin arrangement in phase II.
However to describe the change of the easy magnetization axis between phases I and II
it is then necessary to introduce another type of interaction, for instance the quadrupolar
ones. The existence of non-negligible quadrupolar interactions in TbIn3 is supported by the
stabilization of a triple-q structure at low temperatures. It is worth noting that the behaviour
of TbIn3 is very similar to those already observed in other cubic compounds like DyCu,
DyAg or TmGa3 where quadrupolar interactions strongly compete with dipolar ones.

With the quadrupolar Hamiltonian treated in the mean-field approximation ((8) and
(9)), the total Hamiltonian (1) is then self-consistently diagonalized for each of the
eight sites of the cubic magnetic cell. In a cubic symmetry the description of the
quadrupolar coupling requires two dispersion curves,Kγ (k) andKε(k), associated with
each quadrupolar irreducible representation03(γ ) and05(ε). In addition to the crystal field
parameters, the calculation requires the knowledge of (i) the Fourier transform of the bilinear
exchange interactions,J (0) andJ (k), (ii) the magnetoelastic coefficients,Bγ,ε and (iii) the
Fourier transform of the quadrupolar coupling constant,Kγ,ε(k). In TbIn3 the magnetic
propagation vectors belong to the〈1/2, 1/2, 0〉 star, therefore in addition to(0, 0, 0), only
the 〈1/2, 1/2, 0〉 quadrupolar propagation vectors are active. The occurrence of a second-
order antiferromagnetic transition atTN is determined byJ (1/2, 1/2, 0) = 1/χ0(TN), where
χ0 is the CEF first-order magnetic susceptibility in the absence of any pair interactions. The
value ofJ (1/2, 1/2, 0) is obtained from the calculation of the CEF first-order susceptibility
using the set of CEF parameters deduced in section 5. In the presence of bilinear
interactions the experimental reciprocal first-order magnetic susceptibility obeys the relation
1/χ1

m(T ) = 1/χ0(T ) − n or using (4) 1/χ1
m(T ) = 1/χ0(T ) − J (0)/(gJµB)2. The value

of J (0) can then be deduced from the experimental value of 1/χ1
m(TN) = 4.32 T µ−1

B .
The values ofJ (0) andJ (1/2, 1/2, 0) are given in table 4.J (1/2, 1/2, 0) = 1.55 T µ−1

B
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corresponds to a temperature of 32.8 K, a value close toTN as result of the weak CEF
splitting. J (0) = −2.77 Tµ−1

B corresponds to a temperature of−58.6 K. This experimental
determination is affected by the short-range order effects, which have been shown to be
important at least close toTN , so aJ (0) value, smaller than the calculated bilinear exchange
coefficient, is not surprising. This value better compares with that ofθ∗exp = −56 K.

The magnetostriction measurements performed on the dilute sample give us the values of
the magnetoelastic coefficients. Unfortunately in the absence of the same measurements in
the paramagnetic range of TbIn3, the values ofKγ (0) andKε(0) remain undetermined
experimentally. The quadrupolar energy which intervenes in the total free energy for
a [111] easy axis is related to thePij terms and the triple-q structure is stabilized as
long as the quadrupolar coefficients satisfy the relationKε(0) < Kε(1/2, 1/2, 0). In low
applied field the calculations show thatKε(0) is almost ineffective, so its value may be
chosen arbitrarily provided it satisfiesKε(0) < Kε(1/2, 1/2, 0). When the easy axis is
a fourfold one, the quadrupolar energy contribution to the free energy is associated with
the O0

2 andO2
2 terms and only single- or double-q structures can be stabilized. For a

single-q structure (ferroquadrupolar interactions) the quadrupolar coefficients should satisfy
Kγ (0) > Kγ (1/2, 1/2, 0). Here alsoKγ (1/2, 1/2, 0) is inactive in zero field and its
value is taken equal to zero in the calculations. Then the only two active parameters are
Kε(1/2, 1/2, 0) andKγ (0). The value ofKε(1/2, 1/2, 0) was first adjusted in order to
obtain the triple-q stabilization with a value of the magnetic moment at low temperature in
agreement with the experimental one (µT b(3 K) = 8.88± 0.1 µB [21]). This condition is
satisfied for values ofKε(1/2, 1/2, 0) in the range 12 to−12 mK. To stabilize the collinear
structure in phase I, the second quadrupolar interaction coefficientKγ (0) is required. The
Kγ (0) value determines the transition temperatureT1. It was then adjusted to obtain the
transition at the experimental valueT1 = 26 K. It turns out that the collinear structure
can be stabilized only for negative values ofKε(1/2, 1/2, 0). For positive values of
Kε(1/2, 1/2, 0) the triple-q structure is favoured in the whole ordered domain. The set
of Kγ (0) andKε(1/2, 1/2, 0) values thus determined are given in table 5. In order to
test the validity of this determination the specific heat and the thermal variation of the
magnetization under an applied field of 0.4 T have been calculated. The calculations are
compared in figures 11 and 12 to the experimental data. In both cases the agreement is
fairly good.

Table 5. Dipolar and quadrupolar interaction coefficients used in the zero-field calculations.

J (0) (T µ−1
B ) J (1/2, 1/2, 0) (T µ−1

B ) Kγ (0) (mK) Kε(1/2, 1/2, 0) (mK)

−2.77 1.55 10.1 −10.0

It may be however pointed out that the set of quadrupolar coefficients introduced in
the calculations is not the unique one. Indeed the lack of parastriction measurements in
the paramagnetic phase in TbIn3 does not allow us an estimation of the magnitude of
Kγ (0) andKε(0). Nevertheless the values determined in this work can be compared with
those found previously in NdIn3. In TbIn3 we calculate a total quadrupolar coefficient,
Gγ = (Bγ 2

/C
γ

0 )+Kγ (0) = 15 mK; this value is quite consistent with the one deduced in
NdIn3,Gγ = 12 mK, from parastriction measurements in the paramagnetic range. Assuming
antiferroquadrupolar interactions in TbIn3 (Kε(0) < Kε(1/2, 1/2, 0)), Gε should be smaller
than 7 mK. This weak value forGε in TbIn3 is also in agreement withGε = 0 in NdIn3

and supports the validity of our determination.
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Figure 11. Full dots represent the experimental specific heat from [8]. The calculated specific
heat is drawn in a full line.

Figure 12. Thermal variation of the magnetization measured under 0.4 T with the magnetic
field applied along the [110] axis (open dots). The full line represents the calculated thermal
variation with the same conditions for direction and intensity of the magnetic field.

7. Conclusion

Neutron diffraction experiments on a single crystal and under magnetic field have allowed
us to determine the actual spin arrangement in the two spontaneous phases of TbIn3. The
existence of antiferroquadrupolar interactions is strongly supported by the stabilization of
a triple-q structure in the low-temperature magnetic phase. The present work has also
demonstrated the possibility of using the CEF susceptibility formalism to have access to
the crystal-field parameters at least in a dilute system. It turns out that in TbIn3 these
parameters are positive as in the light-rare-earth compounds of the series. This contradicts
the statement of the sign change of the CEF parameters throughout the series reported in
literature. The determination of the CEF parameters has been an essential step to further
describe quantitatively the zero-field magnetic properties of TbIn3. Within the mean-field
approximation, the model used in this work takes into account the periodicity of both the
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bilinear and quadrupolar interactions. The spontaneous phase transition is well reproduced
by ferroquadrupolarγ and antiferroquadrupolarε couplings of comparable intensity. This
model was successfully developed by Amara and Morin [25] to describe the complex
magnetic phase diagram in NdZn. Its application to TbIn3 confirms its relevance to account
for the magnetic properties in high-symmetry systems involving quadrupolar interactions.
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